
Frank Hilhorst

President Progressive Consulting Inc.
Email: Frank@ProgressiveConsultingInc.com

Phone #: 561-8432839

Subtitle : How to support multiple UI

 platforms simultaneously

Session : 1017

Title : Future proofing your application

 through layering

1

mailto:Frank@ProgressiveConsultingInc.com

What is the focus of this presentation?

• Examine how we can support multiple UI platforms

simultaneously with minimum duplication of effort

2

Where does the need to support multiple

UI’s simultaneously arise from?

• You are migrating or extending an application to a new UI

platform

• The old application still needs to be supported

• The old application is still being sold

• The need to make functional changes to the old (and

new) application continues during the migration

• The old and the new application share (at least some of)

the same screens

• You cannot afford duplicate development teams

3

What you will learn today

• What forms of support PROGRESS offers for non-

native UI technologies

• Understanding the Model/View/Presenter design

pattern

• How this pattern can be used to achieve UI

independence

• Classifying UI technologies in terms of the layers

needed

• Use layering as a vehicle to understand the

advantages of ABL/OO

4

Demo

• Same screen

• Progress WebClient

• AppServer implementation

• Web Services implementation

• Java Swing

• OpenLaszlo/Ajax

• HTML/Javascript/Ajax

• Supported by the same code base

5

Progress support for non-native UI

platforms

• OpenClient (JAVA, .NET etc)

• WebSpeed

• Web Services

• ODBC/JDBC

6

Which application is easier to port?

Client /

Server

Client

80%

Server

20%

Server

80%

Client

20%

A B C

7

The Model/View/Presenter design pattern

Model Presenter View

Responsibilities:

•Notify

presentation

Layer of UI

Events

•Update UI state

Responsibilities:

•Process UI

Event

•Notify Model and

get data

•Present data to

view layer

Responsibilities:

•Process Input

Presenter Layer

•Update State

(e.g.Update DB)

•Present data to

presenter layer

8

Super-imposing Model/View/Presenter

on the disconnected Model

M

O

D

E

L

S

O

A

P

r

e

s

e

n

t

e

r

Server

T

r

a

n

s

l

a

t

i

o

n

P

r

e

s

e

n

t

e

r

V

i

e

w

Client

9

Deconstructing the view layer

M

O

D

E

L

S

O

A

P

r

e

s

e

n

t

e

r

Server

T

r

a

n

s

l

a

t

I

o

n

P

r

e

s

e

n

t

e

r

Client

V

i

e

w

10

Looking at a UI as a collection of

“Event/State Change” relationships

 On Value-Changed of “Transaction Group”:

• GetData(Output cList-items)

• TransactionType:List-Items = cListItems.

 On Value-Changed “Transaction Type”:

• GetData(Output cList-items,Output table ttGlInfo)

• Transaction Sub Type:List-Items = cListItems.

• Populate Debit & Credit info

 On Value-Changed “Transaction Sub Type”:

• GetData(Output table ttGlInfo)

• Populate Debit & Credit info

11

This is all the UI needs to support all

“Event/State Change” relationships

12

And next...

Deconstructing the client side presentation layer

M

O

D

E

L

S

O

A

P

r

e

s

e

n

t

e

r

Server

T

r

a

n

s

l

a

t

I

o

n

P

r

e

s

e

n

t

e

r

V

i

e

w

Client

15

Deconstructing the client side

presentation layer

Each public method uses

Protected method “GetData” to

communicate with the server

side presenter layer.

“sspAccountGrpDiag.p” is the

server side “presenter” layer

dedicated to comminicating with

the UI in the “language” of state

changes.

16

Deconstructing the server side

presentation layer

M

O

D

E

L

S

O

A

P

r

e

s

e

n

t

e

r

Server

T

r

a

n

s

l

a

t

I

o

n

P

r

e

s

e

n

t

e

r

Vi

e

w

Client

17

What screen would be easier to create

and maintain on another UI Platform?

• A screen that uses 5 APPSERVER procedures

• A screen that uses 1 APPSERVER procedure

18

A look inside server side presentation layer

Generic signature supports all

possible inputs and outputs for

communicating with the client side

“presenter” layer.

icOperation contains the name of

the internal procedure to run.

Function “ParameterValue” is used

to parse parameter values out of

the name value pair string

icInputParameters

19

Examining the Translation Layer

M

O

D

E

L

S

O

A

P

r

e

s

e

n

t

e

r

Server

T

r

a

n

s

l

a

t

I

o

n

P

r

e

s

e

n

t

e

r

V

i

e

w

Client

20

So how do you communicate with a UI

technology that only understands XML?

Call the server side

“presenter” layer.

Translate the outputs

into a (nested) XML

document

<!CDATA[. .]]> tag

can be used to embed

an XML document

within an XML

document

21

What the output of write-xml looks like

22

Using the <![CDATA[....]]> tag to embed an

XML document within and XML document

23

Recap of the layering approach:

Things to define

• Define UI in terms of set of “Event/State change”

relationships

• Define an API for every “Event/State change”

relationship

• Define generic signature for the GetData method

24

Recap of the layering approach:

Sequence of steps

• Create UI

• Create client side presenter layer (class or persistent

procedure)

• Create server side presenter layer (appserver

procedure)

• Implements GetData signature

• If necessary create CGI wrapper around server side

presenter layer to translate signature into XML

25

Frank Hilhorst

President Progressive Consulting Inc.
Email: Frank@ProgressiveConsultingInc.com

Phone #: 561-8432839

Subtitle : How to support multiple UI

 platforms simultaneously

Session : 1017

Title : Future proofing your application

 through layering

26

mailto:Franciscus@ProgressiveConsultingInc.com

Bonus Slides

27

Useful ABL/OO features to support layering

 • Defining an interface

 • Inheritance and overriding

 • Overloading

28

Advantages of defining an

interface

• Class signs a contract to support a certain set of

 methods with a certain input/output signature

• Compliance is verified at compile time

29

How to define and implement an

interface

Definition of the

interfaced

Implementation of

the interface

30

Use of inheritance in client side presenter

class

• Presenter class for web services implementation can

inherit from Appserver class

• Inherits interface methods

• Overrides GetData method

31

Definition of “Web Service” client side

presenter class using inheritance

32

Use of overloading

• Define the GetData method multiple times with

different input/output parameter signatures

• Allows this method to be called with only the

parameters that are relevant for that particular

implementation

33

